Partner im RedaktionsNetzwerk Deutschland
PodcastsTechnologieData Science Deep Dive
Höre Data Science Deep Dive in der App.
Höre Data Science Deep Dive in der App.
(16.085)(9.339)
Sender speichern
Wecker
Sleeptimer

Data Science Deep Dive

Podcast Data Science Deep Dive
INWT Statistics GmbH
Wir machen Data Science. Und in unserem Podcast Data Science Deep Dive reden wir darüber. Du bist ebenfalls Data Scientist oder interessierst dich für Daten, M...

Verfügbare Folgen

5 von 68
  • #67: "It works on my machine" war gestern – Docker Best Practices für Data Science
    Dieser Satz "it works on my machine" hat IT-Teams und Data Scientists lange Nerven gekostet. Früher war Deployment ein mühsames Zusammenspiel aus Setup-Anleitungen, inkompatiblen Umgebungen und endlosen Rückfragen. Docker bringt endlich Ordnung ins Chaos: Anwendungen laufen isoliert, reproduzierbar und unabhängig vom Host-System. Warum Containerisierung für Data Science ein echter Gamechanger ist und welche Best Practices du kennen solltest, erfährst du in dieser Folge!   Zusammenfassung  Früher war Deployment umständlich: lange Setup-Anleitungen, inkompatible Umgebungen, viele Rückfragen  Virtuelle Maschinen haben das Problem teilweise gelöst, sind aber ressourcenintensiv und unflexibel Data Scientists arbeiten oft mit R/Python, was IT-Abteilungen vor Herausforderungen stellt Fehlende Reproduzierbarkeit führt zu Stress, Verzögerungen und hohem Kommunikationsaufwand Docker schafft eine standardisierte, isolierte und reproduzierbare Umgebung für Anwendungen Container laufen direkt auf dem Host-OS, sind schlanker als VMs und starten schneller Mit Dockerfiles lassen sich Umgebungen als Code definieren und automatisch deployen Best Practices: schlanke Base-Images, .dockerignore, nur benötigte Abhängigkeiten installieren Automatisierung mit CI/CD-Pipelines beschleunigt den Entwicklungs- und Deploy-Prozess Containerisierung ist für moderne Data-Science-Workflows unverzichtbar und spart IT sowie Data Science viel Zeit Links Offizielle Docker Dokumentation https://docs.docker.com/ Docker Hub https://hub.docker.com/ [Blog] Die Welt der Container: Einführung in Docker https://www.inwt-statistics.de/blog/die-welt-der-container-einfuehrung-in-docker [Podcast] #14: Kubernetes https://www.podbean.com/ew/pb-m5ggz-13454c7 [Podcast] #59: Besser mit Helm: komplexe Deployments einfach(er) umsetzen https://www.podbean.com/ew/pb-txhnf-17314de [Video] Solomon Hykes stellt Docker vor (2013) "The future of Linux Containers" https://www.youtube.com/watch?v=wW9CAH9nSLs&t=158s Fragen, Feedback und Themenwünsche gern an [email protected]
    --------  
    34:53
  • #66: Developer vs. Data Scientist mit Andy Grunwald und Wolfgang Gassler
    Warum knirscht es immer wieder zwischen Data Scientists und Developern? In dieser Episode holen wir uns Verstärkung von Andy und Wolfi vom Engineering Kiosk Podcast um dieser Frage auf den Grund zu gehen. Wir reden über typische Klischees und warum diese zu Konflikten führen. Gemeinsam sprechen wir darüber, welche Skills helfen, damit beide Spezies am Ende harmonisch zusammenarbeiten können – statt sich gegenseitig auszubremsen. Zusammenfassung Klischees und Konflikte: Stereotype über Data Scientists (Jupyter-Fans, Doktortitel) und Developer (Perfektionismus, Black-Box-Furcht) Teamorganisation: Cross-funktionale Teams vs. getrennte Abteilungen (Vor- und Nachteile, Agenturmodell) Typische Herausforderungen: Übergabe von Prototypen an die Entwicklung, Verständnis von SLAs/Responsezeiten, Datenbankauswahl Skill-Set und Zusammenarbeit: Generalistisches Grundwissen in DevOps und Softwarearchitektur, offenes Mindset Links Engineering Kiosk Podcast: https://engineeringkiosk.dev/ Andy Grunwald auf LinkedIn: https://www.linkedin.com/in/andy-grunwald-09aa265a/ Wolfgang Gassler auf LinkedIn: https://www.linkedin.com/in/wolfganggassler/ [Engineering Kiosk] #179 MLOps: Machine Learning in die Produktion bringen mit Michelle Golchert und Sebastian Warnholz https://engineeringkiosk.dev/podcast/episode/179-mlops-machine-learning-in-die-produktion-bringen-mit-michelle-golchert-und-sebastian-warnholz/ [Engineering Kiosk] #178 Code der bewegt: Infotainmentsysteme auf Kreuzfahrtschiffen mit Sebastian Hammerl https://engineeringkiosk.dev/podcast/episode/178-code-der-bewegt-infotainmentsysteme-auf-kreuzfahrtschiffen-mit-sebastian-hammerl/ [Engineering Kiosk] #177 Stream Processing & Kafka: Die Basis moderner Datenpipelines mit Stefan Sprenger https://engineeringkiosk.dev/podcast/episode/177-stream-processing-kafka-die-basis-moderner-datenpipelines-mit-stefan-sprenger/ [Data Science Deep Dive] #30: Agile Softwareentwicklung im Data-Science-Kontext https://www.podbean.com/ew/pb-mvspn-1482ea4 [Data Science Deep Dive] #23: Unsexy aber wichtig: Tests und Monitoring https://www.podbean.com/ew/pb-vxp58-13f311a [Data Science Deep Dive] #20: Ist Continuous Integration (CI) ein Muss für Data Scientists? https://www.podbean.com/ew/pb-4mkqh-13bb3b3 Fragen, Feedback und Themenwünsche gern an [email protected]
    --------  
    1:03:42
  • #65: Sicher ist nur die Unsicherheit: Unsicherheitsintervalle erklärt
    Punktprognosen sind was für Leute, die gerne enttäuscht werden ;) Wir befassen uns in dieser Episode mit der Quantifizierung und Kommunikation von Unsicherheit bei Prognosen. Dabei gehen Mira und Amit auf klassische Statistik, Bayes-Methoden, Machine Learning, Bootstrapping und Conformal Predictions ein. Außerdem gehen sie auf Herausforderungen der Data Literacy und bei rechenintensiven Ansätzen zur Bestimmung der Unsicherheit ein. Zusammenfassung Warum Unsicherheiten unverzichtbar sind (Beispiel Wetter-, Wahl-, Bewerberprognosen) Klassische Statistik: Konfidenzintervall vs. Prediction Intervall Bayesianische Sicht: Glaubwürdigkeitsintervalle ML-Methoden ohne Verteilungsannahmen: Bootstrapping & Conformal Predictions Rechenaufwand vs. Modellannahmen Data Literacy als Schlüssel zum richtigen Interpretieren von Prognoseintervallen Praxisnahe Beispiele und Entscheidungshilfen Links #10: Signifikanz https://www.podbean.com/ew/pb-y25ti-12fab65 #44: Lineare Regression in der Praxis – Oldie oder Goldie? https://www.podbean.com/ew/pb-jiecf-15d0ac1 #56: Unsere Bundestagswahl-Prognose: Wer gewinnt die Wahl 2025? https://www.podbean.com/ew/pb-hwgnd-16e446e Wer gewinnt die Bundestagswahl 2025? www.wer-gewinnt-die-wahl.de Molnar (2023): Introduction To Conformal Prediction With Python. A Short Guide For Quantifying Uncertainty Of Machine Learning Models. Sammlung von Ressourcen zu Conformal Predictions https://github.com/valeman/awesome-conformal-prediction/ Feedback, Fragen oder Themenwünsche gern an [email protected]
    --------  
    28:50
  • #64: Predictive LLMs: Übertreffen Open-Source-Modelle jetzt OpenAI und XGBoost bei Preisprognosen?
    Teil 2 unseres Preisprognose-Experiments für Gebrauchtfahrzeuge: Können Open-Source-LLMs wie Llama 3.1, Mistral und Leo-HessianAI mit GPT-3.5 mithalten? Wir haben fleißig gefinetuned, bis die Motoren qualmten – und es zeigt sich, dass die Unterschiede gar nicht mehr so groß sind. Mit ausreichend vielen Trainingsbeobachtungen nähern sich die Open-Source-Modelle den Ergebnissen von GPT-3.5 an und können es in einzelnen Metriken sogar übertreffen. Für das Finetuning größerer Modelle sind jedoch auch leistungsfähige GPUs notwendig, was die Ressourcenanforderungen deutlich erhöht. In der Folge beleuchten wir, welchen Mehrwert diese Open-Source-LLMs für praxisnahe Use Cases liefern und welche Herausforderungen dabei auftreten. Zusammenfassung: Vergleich von OpenAI GPT-3.5 und drei Open-Source-LLMs (Llama 3.1, Mistral 7B, Leo-HessianAI) Finetuning der Modelle auf lokalen Daten Ergebnisse: Open-Source-LLMs sind bei größerem Trainingsdatensatz fast so gut wie GPT-3.5 XGBoost hinkt etwas hinterher, da Freitexte hier nicht einbezogen wurden Wichtige Faktoren: Batchgröße, Trainingsschritte, Speicherbedarf und Nutzung von Lora-Finetuning Beim Einsatz von Open Source ist mehr Handarbeit nötig, dafür bleibt alles on-premise OpenAI punktet durch Einfachheit und hohe Qualität ohne großen Datenbedarf Frameworks wie Huggingface, Mistral Codebase und Torchtune unterstützen das Finetuning Ausblick: größere LLMs mit Multi-GPU, multimodale Daten und Unsicherheitsquantifizierung   ***Links*** [Blog] Predictive LLMs: Übertreffen Open-Source-Modelle OpenAI bei Preisprognosen? https://www.inwt-statistics.de/blog/predictive-llms-uebertreffen-os-modelle-openai-bei-preisprognosen [Podcast] #50: Predictive Analytics mit LLMs: ist GPT3.5 besser als XGBoost? https://www.podbean.com/ew/pb-n6wem-165cb2c [Blog] Predictive LLMs: Kann GPT-3.5 die Prognosen von XGBoost verbessern? https://www.inwt-statistics.de/blog/predictive-llms-kann-gpt-xgboost-prognosen-verbessern [Podcast] #43: Damit es im Live-Betrieb nicht kracht: Vermeidung von Overfitting & Data Leakage https://www.podbean.com/ew/pb-vw736-15baac0 [Link] Llama-3.1-8B-Instruct auf Huggingface https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct - [Link] Mistral-7B-Instruct-v0.3 auf Huggingface https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3 [Link] Mistral 7B Release Notes https://mistral.ai/news/announcing-mistral-7b/ [Link] leo-hessianai-7b auf Huggingface https://huggingface.co/LeoLM/leo-hessianai-7b [Link] The Hessian Center for Artificial Intelligence https://hessian.ai/de/ [Docs] LangChain: How to return structured data from a model https://python.langchain.com/docs/how_to/structured_output/#the-with_structured_output-method [Link] Wie hoch sind die Treibhausgasemissionen pro Person in Deutschland durchschnittlich? https://www.umweltbundesamt.de/service/uba-fragen/wie-hoch-sind-die-treibhausgasemissionen-pro-person#:~:text=Der%20deutsche%20Aussto%C3%9F%20an%20Treibhausgasen,sehr%20gro%C3%9Fe%20Unterschiede%20im%20Konsumniveau.
    --------  
    40:31
  • #63: Data Mining: der pragmatische Weg zu Datenreife & Datenkultur mit Prof. Dr. Ana Moya
    „Data Mining“ – klingt nach Staub und Schaufeln, ist aber der Schlüssel zur Mustererkennung in Daten! Wir diskutieren, warum einfache Methoden oft besser sind als fancy KI-Lösungen, besonders bei niedriger Datenreife. Außerdem: Wie man nachhaltigen Mehrwert schafft, ohne sich in Dashboards zu verlieren, und welche Skills und Tools wirklich zählen. Hilfreich für alle, die effektiv mit Daten arbeiten wollen.   Zusammenfassung Data Mining: Definition und Bedeutung als pragmatischer Ansatz zur Mustererkennung Herausforderungen: Niedrige Datenreife und der Druck, „fancy“ Methoden einzusetzen Lösungsansätze: Bewährte Methoden wie Statistik, Visualisierungen und Anomaly Detection Nachhaltigkeit: Optimierte Prozesse und ressourcenschonende Lösungen als Kernnutzen Skills und Tools: Analytisches Denken, Statistik, Programmierkenntnisse, sowie Tools aus dem Bereich Business Intelligence und Programmiersprachen wie R & Python Fehler vermeiden: Datenqualität, Vermeidung von Confirmation Bias und sinnvolle Nutzung von Dashboards   ***Links*** Prof. Dr. Ana Moya auf LinkedIn: https://www.linkedin.com/in/doc-moya/ International School of Management (ISM) https://en.ism.de/ INFOMOTION GmbH https://www.infomotion.de/ Power BI https://www.microsoft.com/de-de/power-platform/products/power-bi?market=de Tableau https://www.tableau.com/ Python https://www.python.org/ R https://www.r-project.org/ Fragen, Feedback und Themenwünsche gern an [email protected]
    --------  
    42:39

Weitere Technologie Podcasts

Über Data Science Deep Dive

Wir machen Data Science. Und in unserem Podcast Data Science Deep Dive reden wir darüber. Du bist ebenfalls Data Scientist oder interessierst dich für Daten, ML und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten. Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in über 10 Jahren als Data Scientists im B2B Bereich gesammelt haben. Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt. Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.
Podcast-Website

Hören Sie Data Science Deep Dive, TED Radio Hour und viele andere Podcasts aus aller Welt mit der radio.at-App

Hol dir die kostenlose radio.at App

  • Sender und Podcasts favorisieren
  • Streamen via Wifi oder Bluetooth
  • Unterstützt Carplay & Android Auto
  • viele weitere App Funktionen
Rechtliches
Social
v7.10.0 | © 2007-2025 radio.de GmbH
Generated: 3/12/2025 - 10:54:13 AM